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TECHNICAL PAPER

ILLUSTRATED STRUCTURAL APPLICATION OF UNIVERSAL

FIRST-ORDER RELIABILITY METHOD

I. INTRODUCTION

As in many technical papers, brief narratives on structural first-order reliability methods have

been published 1 23 emphasizing the derivation, justification, and improvements over prevailing con-
cepts but with no appreciation for its application. This supplementary document presents the method

in its final status, and illustrates user-friendly techniques and solutions in a variety of semistatic

(static and dynamic imposed loads) problems for the understanding by structural analysts. Sta-

tistical data are characterized, existing analytical techniques are incorporated, models are developed,

and reliability criterion is established to construct the first-order reliability method.

Structural improvements which are necessary to support affordable access-to-space are in

the materials, joints, reliability, and the design system process. Reliability improvement provided the

widest range of benefits with the least committed resources. This first-order reliability method was

developed because it offered the best approach to surmount deterministic inherent deficiencies and to

accomplish them within prevailing cultures and practices. It is the simplest, most expedient, and the

most developed and familiar of all reliability methods. Because first-order reliability is restricted to

normal probability distributions, the proposed approach of normalizing all skewed distributions leads
to the universal adoption of the first-order reliability method. This pragmatic technique of using only

the engaged half of the distribution data to construct a symmetrical (normal) distribution is seem-

ingly sound. Undue difference between the actual and the normalized distribution may be treated

similar to other modeling design errors.

Both deterministic and reliability methods are shown to achieve structural safety by sizing

structural forms or elements through specified ratios of resistive to applied stresses. The determin-

istic method specifies the ratio by an arbitrarily selected safety factor. The proposed method derives

the reliability design factor from specified reliability criteria. Both applications are illustrated through

a structural design procedure outlined in figure 1, to provide an orderly phasing and development

process of statistical data and design parameters, and to explore their relationship and control over

reliability. Reliability selection criteria are briefly addressed.

Scopeproblem I I Shapeenve'°Pell°eve'°psta''s''c'manu,ac,ureenvironments, to minimize I

data; loads, mat'l I
envelope size environments

1
2 3 4

Model II Sizestructure IOeterminestatistica,llsizestructureI
Stress response deterministic parameters of I first order reliability I

failure criterion method combined stresses I method I
5 6 7 8

Figure 1. Structural design system process.

This study has been limited to semistatic structures that comprise over 60 percent of the

aerostructural weight. Pertinent excerpts from earlier concept developments are included for



completeness,and publishedstandardmethodsarereferenced.Thoughlacking eloquence,it is hoped
the visibility of analytical illustrations and depth of discussionsand techniquesare sufficient to
provide the structural deterministic community and the topic novice the understanding of its
applicationand motives for improvements.

II. FAILURE CONCEPT

Central to the appreciation of the proposed universal first-order reliability method is a funda-

mental understanding of the failure concept and its necessary conditions. All observed and measured

phenomena may be reduced to probability distributions. When applied stress demand, FA, and resis-

tive stress capability, FR, are defined by probability distributions, failure occurs when the tails of the

two distributions overlap, as shown in figure 2. Their tail-overlap area suggests the probability that

a weak resistive material will encounter an excessively applied stress to caus.e failure. The proba-

bility of failure is reduced as their tail overlap area decreases by increasing the difference of the

resistive and applied stress means, pR--]/A, and as their distribution natural shapes decrease.

f
applied
stress
(demand)

_tR - _t_----'m

f

_R

\
resistive
stress

(capability)

stress_

Figure 2. Structural failure concept.

A. Controlling Features

The difference between the applied- and resistive-stress distribution means is the only

designer control (active) parameter of the area of overlapped tails. Tail shapes are defined by pas-

sive (firm) design variables which are uniquely fixed by their natural scatter around their distribution

means. In a given structural form having common material properties, the resistive-stress distribu-

tion shape may be constant through all regions. However, local applied-stress distribution shapes

may vary throughout the structure due to local abrupt changes in geometry, loads, metallurgy, tem-

perature, etc. Therefore, any change in applied-stress distribution shape without a corresponding

change in the means will change the probability of failure in that region, resulting in nonuniformly

reliable structures, and worse, unsuspected weak regions.

In engineering applications, these shapes are modeled by distribution functions to estimate

the probability of a desired value for an assigned range of distribution. As shapes become more

complex, probability distribution types and complexities increase, which prolongs lead time, and

intensifies labor, skills, and training. The normal distribution shape is the simplest, best developed,

most known, and expedient. Its distribution is symmetrical about the mean, and it is completely

characterized by two variables.



As in most engineering applications, only the distribution side producing the worst-case
designproblemis of any interest,aswasclearly demonstratedby thefailure conceptof figure 2. Only
data from the right half of the applied-stressdistribution (greatestdemand)are engagedwith data
from only the left side (weakest capability) of the resistive stress. Data from the other two
disengaged-distributionhalves are irrelevant to the failure concept.This inherent observation,as
well as experiencewith relateddatashapesand the central limit theory, lead the author to presume
that all probability distributions associatedwith semistatic structural loads, stresses,and materials
may bemadeuniversallysymmetricalby constructinga mirror imageof the engineeringengagedside
aboutthe peak frequencyvalue of the distribution.This constitutedsymmetrical distribution entitles
its adaptationto all practicalnormal distributiontechniquesand advantages.

The universally normalizeddistribution is characterizedby two parameters,the meanand the
standarddeviation.The meanis assumedby

bt = peak frequency value. (1)

The variance is calculated from the constructed symmetrical distribution,

a_ _ (x,-/_)=_ , (2)
_n-1

from which the standard deviation is

<_x,-v)=]½
o" =1 Zn-1 J (3)

A useful nondimensional parameter that denotes the relative natural scatter of data is the coefficient

of variation (cov)
_IY

r/ -_-- . (4)

The universal transformation of random variables to normal distributions simplifies a wide

range of structural interfaces, applications, and design specifications. Should an inconsistency appear

between normalized and another "assumed" distribution, the normalizing approach is pragmatically

preferred and the difference is treated as all other design modeling errors. Normal distribution is

easiest to learn and simplest to apply, and it is pivotal to the development of the universal first-

order reliability method.

B. Tolerance Limits

An extensively practiced feature of normal distribution by loads, stress, and materials disci-

plines is the specification of a design parameter through the statistical characterization of the toler-
ance limit. Tolerance limits 4 specify the mean and the probability distribution range on either left or

right side of the mean. It is specified by

Q = _+Ncr, (5)

or, in using equation (4), the tolerance limit may be more conveniently expressed as a product of the
mean value and dimensionless variables,



Q =/1 (l+Nr/). (6)

The designer-controlled N-factor specifies the probability range, as illustrated on the proba-

bility density distribution in figure 3. It is sometimes referred to as the tolerance limit coefficient, but
here it is referred to as the probability range factor. A probability range factor specified by N = 1, 2, 3,

or 4 standard deviations about the mean of a normal distribution is calculated to capture 68.27, 95.45,

99.86, or 99.73 percent of the phenomenon population, respectively. A probability range factor N = 1,
2, 3, or 4 of a one-sided distribution is calculated to capture 84.13, 97.72, 99.86, or 99.94 percent of

the phenomenon population, respectively.

I
Probability

_ distribution

' I "-I- -
I_1, O' iQ

Figure 3. Upper tolerance limit.

A positive deviation specifies the upper tolerance limit usually associated with demands, and

a negative range factor refers to the weaker side of the capability. One standard deviation includes

the probability range to the inflection point of the normal distribution curve. While a minimum of 30

samples may provide a workable mean stress, more than 4 times that many samples may be

required to establish a good 3 standard deviation stress. As the sample size increases, the natural
probability range factor approaches 2.

lII. ILLUSTRATION MODELS

The illustration model selected was a simple static structure conceived to demonstrate the

normalization and characterization of engineering data and the formatting of the stress form and

sizing required for combining multiaxial stress components. The deterministic and first-order relia-

bility methods are illustrated through analytical models for maximum visibility, understanding, and

implementation of fundamental features to a variety of practical design conditions leading to a robust

structural link. Here robustness is understood as performing well, reliably, and at least life-cycle
COSTS.

A. Configuration

The structural system environments consist of a tension load, "P," at an angle, "0," from the

axial torsional load, "T," to be transmitted a distance, L, to point x = 0. These requirements
establish the envelope size and operating environments that shape and optimize load paths to

produce a high-performance structure. A tapered round shaft, shown in figure 4, provides the

optimum configuration for the specified type loads, paths, and arrangements. The single surface,

shape, and limited dimensions simplify production and inspection, all of which minimize rejects and

costs. The third robust condition is operational reliability that focuses on determination of the shaft

radius, "r." For brevity of presentation, the radius will be determined only at x = 0.



L_x= 14 __eP__6
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/

Figure 4. Structural configuration.

After determining the scope of the problem, noting its load paths, and framing the component
to minimize the load influences on structural form sizing, then the engineering data development and

stress response formulations follow that are required to determine the radius for a robust structural
link.

B. Data Development

Imposed tension and torsion environment data are assumed to be based on a series of

observed measurements reduced into a frequency distribution, or probability histograms, as shown in

figure 5. The base of the histogram is bounded by successive and equal ranges of measured values,

and the heights represent the number of observations (frequency) in each range.
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Figure 5. Loads frequency distributions.

To illustrate the direct normalization of a skewed distribution, the torque frequency distribu-

tion data of figure 5 are applied to equations (1) through (4). Because the greater torque side defines

the worst demand case, only data from the shaded right side are used in figure 6 to calculate the
normalized distribution variables.

n (xi-]./) 2 distribution mean, /.t = 14 kip-in.

lx8 (14.0-14.0) l = 0

2×7 (14.5-14.0) 2 = 3.5

2x4 (15.0-14.0) 2 = 8.0
2×2 (15.5-14.0) 2 = 9.0

2×1 (16.0-14.0) 2 = 8.0
]_ = 28.5

sample size; 5-',n = 8+2 (7+4+2+1) = 36

variance, equation (2), or2 = 28.5 / 35 = 0.81

and std. dev., eq (3), cr = 0.90
cov, eq (4), r/= 0.9/14 = 0.065

Figure 6. Normalizing skewed distribution.
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The materials selection task interfaceswith all structural disciplines, and its result has the
greatestand most lasting effect on robust design. All material performance, manufacturing pro-
cesses,control points, and their costs are researchedand traded.The structural analyst's interestat
this interface is the assuranceof robustmaterialperformanceand a sufficient mechanicalproperties
data base defined with tolerancelimit variables.Experienceor knowledge from previous similar
applicationsof critical andcomplexregionssubjectedto forging, spinning,welding,cold shaping,etc.,
manufacturingprocessesarescrutinizedfor potential bottlenecks.

Figure 7 showsexamplesof strengthfrequencydistributionsdataassumedfor developingthe
required capability properties for dimensioning a structural component to a specified reliability.
Exceedingthe yield strengthdeformsthe part, which may changeboundaryconditions and compro-
mise the part's operation. Exceedingthe ultimate strengthby anomalousloading will fracture the
part thus leading to serious losses.

e"

e-

E

z

10'

,

lO

5

(3
24 28 32

Yield stress, Fy, Ksi
36 40 44

Ultimate stress, Fu , Ksi

Figure 7. Frequency distribution of material strengths.

Normalized statistical parameters from figures 5 and 7 distributions are summarized in table 1.

Table 1. Statistical variables of normalized loads and material.

Design
Parameter

Loads

Torque, T
Normal, P

Strengths

Yield, Fry

Ultimate, Ftu

Sample
Size

36

25

32

33

Mean

//

14 kip-in

1.1 kip

30 ksi

42 ksi

Standard

Deviation

o"

0.902 kip-in

0.138 kip

2.68 ksi

3.04 ksi

Coefficient of

Variation

0

0.065

0.126

0.090

0.072

Maximum expected loads and minimum material strengths are specified through the tolerance

limit for specific events such that any required proportion of their distribution may be represented in
response analyses. Passive statistical variables that characterize tolerance limits are listed in

table 1. Currently, there is no uniform criterion for specifying the probability range factor across dis-

ciplines and projects. Load disciplines generally select the probability range factor for specific events
according to their data and experience base.

6



Applying thecommonlyusedprobability rangefactor of N = 3 to the statistical variables from
table 1, the loads tolerance limits are

P = l.tp+Nptrp , (7)

P= 1.1+3(0.138)= 1.514 kip , (7a)

T = ftr+Nro" r , (8)

T = 14+3(0.902) = 16.70 kip-in . (8a)

The material probability range factor is specified by a K-factor. Because of the inherent ran-
domness in specimens and testing, the same test conducted on the same number of specimens by

different experimenters will result in different means and standard deviations. To ensure, with a

certain percent confidence, that other portions are contained in the population, a K-factor is deter-

mined to account for the sample size and proportion. Figure 8 provides K-factors for random vari-

ables with 95-percent confidence levels with three commonly used probabilities in one-sided normal
distributions.

Lz,
i

_d

1.5
0

9_i • confidence level

f .99 probability
j .95 probability

t _"_ J /.90 probability

10 20 30 40 50 60 70 80 90
Number of samples, n

Figure 8. K-factors for one-sided normal distribution.

The K-factor is designer controlled by the specification of the number of samples required, as

noted in figure 8. The K-factor rate increases sharply for all probabilities using less than 30 samples.

Decreasing the sample size is seen in equation (5) to decrease the allowed material performance,

and it is compounded when the material coefficient of variation is large. For large acreage of struc-

tures, trading cost for increasing the sample size may decrease the cost of payload delivery. Most of

NASA's and DOD's material properties are specified by "A" and "B" basis. The "A" basis allows

that 99 percent of materials produced will exceed the specified value with 95 percent confidence. The

"B" basis allows 90 percent with the same 95 percent confidence.

Again using statistical variables from table 1 and assuming an A-basis material, the proba-

bility range factor for 32 samples is K = 3. The material tolerance limit for yield strength is

F_=t.tly-K_rly , (9)

Fly = 30-3(2.68) = 22 ksi , (9a)

and for ultimate strength is

7



Ftu = ].1 tu-KtYtu ,

Ftu = 42-3(3.04) = 32 ksi .

These strengths are referred to as resistive stresses, FR = Fty, Ftu.

(10)

(lOa)

C. Stress Response Models

The tension and torque loads shown in figure 4 were chosen to illustrate applications of

normal and shear type stresses. The format required is specifically illustrated to combine multiaxial

stress components into response models and for calculating their response combined-mean and

standard-deviation values as required for the reliability method.

The oblique tension load produces axial and bending loads that induces normal and varying

bending normal and transverse shear loads across the shaft length. The ratio of length to diameter
qualifies it as a long beam for basic strength of materials formulation. The round section is an opti-
mum element to sustain torsional shear. The local simultaneous maximum stress responses to

bending, tension, and shear occur on the upper boundary which sizes the structural form. The normal

maximum stress at x = 0 is expressed by

Fx = xP_r2 4--_-Lsin 0 +cos 0] .... (11)

and the torsional stress is

Frz= 2T (12)
/rF 3

Though unnecessary for some deterministic problems, the stress response must be expressed as a

product of the random variable (load) and a stress-form coefficient for reliability methods. These
correspond to the load and stress-transformation matrices, respectively, in a multidegree-of-free-

dom dynamic problem: The normal stress response of equation (11) is then defined by

Fx = LxCx , (13)

where Lx = P is given by the tolerance limit of equation (7). The stress-form coefficient is the geo-

metric stress property of a structural form cross section. The stress-form coefficient of the normal

stress component, Fx, parted from equation (11) is

4 L cos 0 ]Cx = _3r3 sin 0 + xr 2 j ....
(13a)

r 0.15__.99 (13b)Cx = 1----_4 + r3

The shear stress is similarly expressed by

Fyz = LyzCy z , (14)

8



where /-.rz = T is defined by the tolerance limit of equation (8), and the stress-form coefficient from

equation (12) is

Cyz -
- _r 3

Cyz = 0.637
r 3

(14)

(14b)

Response equations (13) and (14) predict the multiaxial component stresses that must be

combined so as not to exceed material strengths derived from figure 7 statistical data. Since these

material strengths are based on uniaxial tension tests, the combined normal and shear applied

stress (demand) values must be compatible and correlational to the uniaxially test derived strengths

(capabilities).

D. Combined Stresses

A commonly used criterion for combining multiaxial stresses into uniaxial stress is the mini-

mum strain energy-distortion theory, which supposes that hydrostatic strain (change in volume) in a

metallic structure does not cause yielding, but changing shape (shear) does cause permanent defor-

mation. This limit of multiaxial stress state is empirically related to the uniaxial tensile yielding, and

it is reasonably consistent with experimental observations. It is sometimes referred to as Mises

failure criterion 6 and is expressed by

1

(15)

Each multiaxial applied stress component in equation (15) is expressed by a tolerance limit,

Fii = fl i+Ni(Yi , ( 16)

and the resulting combined applied stress tolerance limit is a worst-on-worst single-value case

currently used by the deterministic method. However, the reliability method requires the resulting

tolerance limit to be statistically derived and characterized, with all variables explicitly identified and
defined,

F A = ]1 A+NAt7 A , (17)

or using equation (4),

FA =].l A (I+NArlA) . (17a)

An error propagation method 7 and program for the statistical derivation of the combined uniaxial

applied-stress mean, standard deviation, and probability range factor based on the Mises criterion is

presented in appendix A.



IV. DETERMINISTIC METHOD

The deterministic method is dominantly used for sizing structures in the aerospace industry

with mixed justifications. It is the easiest technique to apply and verify. It is generally perceived to

be conservative, but the method harbors enough unsuspected deficiencies that its conservatism may

be contributing to its half-century of success. It is the preferred method for sizing multicomponent

systems having multicritical regions per component, and whose combined structural weight is not
payload-performance sensitive. It is shown to be limited in safety assessments. The method's

design data, parameters, and specified probability ranges are independently developed by loads and
materials disciplines and are provided to stress analysts to size (nonoptimally) and test structural
elements and forms to standard safety factors.

A. Concept

The deterministic method assumes that a given structural system safety may be specified by
an arbitrarily selected ratio of single-valued material minimum strength and maximum applied
stress. That specified ratio is the conventional safety factor,

_rR
S F - -_A " (18)

The NASA intercenter safety factor criterion for semistatic structures is a verified 1.0 ratio on yield
and 1.4 on ultimate strength. Though resistive and applied stresses are generally provided and

specifically applied as single values, they are developed by their respective disciplines with proba-
bility ranges specified through tolerance limits.

Applied-stress components are combined through the Mises criterion, and the resulting
uniaxial stress is expressed by the tolerance limit of equation (17). The minimum resistive stress

based on yield or ultimate stresses is characterized by the tolerance limits of equations (9) or (10).

Incorporating the resistive- and applied-stress tolerance limits into equation (18), the safety factor
may be decomposed with statistical and designer control variables,

SF= PR-KCrR
/LIA+NAO. A (19)

In constructing design parameters from equation (19) into the failure concept of figure 2, the

deterministic concept emerges as dividing the difference of the resistive- and applied-stress means
into three distinct zones, as shown in figure 9. The sum of these zones,

//R-//A = A A + 2 o+A R ,

governs the tail-overlap lengths to satisfy one condition of the failure concept. But the method

ignores the corresponding size of the overlap area, which is the second failure concept condition and,
therefore, cannot predict its combined reliability.

To understand the deterministic failure governing technique, it should be noted that each end

zone specifies a probability range to control the tail overlap intercept. Zone Am is the probability

range of the combined applied stresses, Aa = Na CrA, derived from equation (17). Zone AR is the

10
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Figure 9. Conventional deterministic concept.

probability range of the resistive stress, ZR = KtrR, from equation (9) or (10). Both zones indepen-

dently control the difference of their means through the designers' arbitrary selection of probability

range factors, NA and K. The midzone Z o does not explicitly specify a probability range, but its

included safety factor does effectively increase the probability range of the applied stress range fac-

tor, Na. When the safety factor is greater than unity, the combined applied stress effective probabil-

ity range factor is extended by

,

Neff=SF(_A+NA) I_A
(20)

Specifying a 1.0 safety factor, the effective range factor is identically the applied-stress
specified probability range factor. Applying a 1.4 safety factor with NA = 3 will effectively increase it

about three times with a probability value that can only be established as being very safe. On the

other end, operating under the maximum specified environments with a submarginal safety factor will

reduce the applied-stress probability, which increases the tail overlap and probability of failure.

Since the applied-stress probability range factor is related to operational loads, and because

operational loads are verified by limited field or flight tests at a much later development phase, this

effective probability range parameter could serve as another useful index of the unverified load in a

stress audit. While the safety factor margin would verify the pass-or-fail response of the test article,

the effective range factor would predict the total probability of the applied test load using the test

derived safety factor in equation (20). The test derived safety factor would further identify the pro-

portion of the effective range factor verified. This combination would contribute information for design

acceptance or modification, provided the coefficient of variation is made available from the determin-
istic method.

In particular, safety factors exceeding unity will expand the difference of the distribution

means through their inclusion into the midzone and the net extended difference is expressed by

_l R-].l A = [-I R-Il A +(SF-I ) FA (21)

The midzone is defined by

(22)

in which the conventional safety factor is seen to be the most sensitive designer control parameter to

govern the tail overlap.

11



B. Application

Two primary applications of the deterministic method are to size a structural form to a speci-
fied safety factor and to predict the safety factor of an existing structural article or design. A struc-

tural element, or form, is sized through the Mises criterion of equation (15), which is equated to the

maximum allowable stress criterion of equation (18), which, in turn, is limited by a specified safety

factor. Prediction of a structural safety factor is the reverse of sizing and is more direct, therefore,

only the structural form sizing of the figure 4 configuration needs to be illustrated.

In sizing a structural form, the deterministic tension load of equations (7a) and the stress-

form coefficient of equation (13b) are substituted into equation (13) to give the deterministic single-
value normal-stress component expressed with the unknown radius,

[-_ 0"1591Fx=1.514 + r3 j . (23a)

Similarly, substituting the deterministic torque and stress-form coefficient of equations (8a) and
(14b), respectively, into equation (14) provides the single-value shear-stress component,

Fyz= 16.7010"637 ]
[ r3 J "

(23b)

Combining these stresses into the Mises criterion, equation (15), renders the structural form-sizing
criterion based on the allowable combined applied-stress criterion FA,

FA = [( 2_37 +_....7_)0.241)2 +3 (1_64)2]½ (23c)

In designing the structure to uniaxial yield stress, the NASA safety factor is unity and the determin-
istic resistive stress from equation (9a) is

FR = Fry= 22 ksi . (23d)

Substituting equations (23c), (23d), and SF =1 into equation (18), the radius dimension is solved by

the Newton method to be r = 1.14 inches. NASA's safety criterion requires a structure to be verified

to no less than the specified design safety factor. To avoid premature test failure and potential

redesign, an estimated uncertainty factor must be lumped into equation (18) to compensate for

modeling errors and human assembling dispersions,

FR = FA×SF( 1+e) . (24)

Modeling errors include boundary assumptions, response models, loads, etc. Estimates may

be based on structural complexities and sensitivities or from knowledge of past test deficiencies. Not

all uncertainties are equally significant on any one structure. Estimating a lump error of 10 percent

and using equation (24), the radius is recalculated to a minimum requirement of r = 1.19 inches.

Repeating the analysis with the SF = 1.4 on ultimate strength, the minimum radius required is

r = 1.13, which is less than the yield strength case, and admits the yield strength condition to be the
worst design case.
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The productionspecificationsof the diameter nominal and tolerances dimensions are based on

sensitivity analyses and trades to produce a robust component. Note that a 10-percent reduction in

allowable stress in the yield strength mode increased the radius 4.4 percent, which should increase

the weight 9 percent. A 9-percent weight increase on large structural forms could be a significant

payload penalty. These types of sensitivity analyses also provide a basis for specifying raw materi-

als acceptance and processing, machining and heat treatment tolerances, assembly tolerances,

inspection points, etc., and for trading their life-cycle costs with payload delivery costs.

Deterministic verification consists of experimentally validating the structural response

through the specified safety factor applied to equation (18). Because the probability of applied loads

varies from project to component, and because the safety factor is essentially a hit-or-miss proposi-

tion, the safety factor alone is not an absolute reference of safety. Verification tests resulting in

submarginal safety factors are usually resolved by intuitive estimates of probability and the conse-

quence of failure, and by similar collective experiences with minimum operational safety factors.

C. Deficiencies

Perhaps the most detrimental feature in the deterministic method is its inability to design and

predict the structural reliability over all regions of a component through a fixed specified safety factor

as commonly assumed. Because the tail-overlap area of the interacting applied- and resistive°

stress distributions is governed by the difference of their means only, and recalling from the failure

concept conditions that change in combined applied-stress distribution shapes, 71a. acting at critical

regions cannot be recognized for local sizing, then a constant safety factor cannot provide a uniformly
reliable structure.

Since the probability range factor and the safety factor are independently specified, and both

simultaneously govern the tail-overlap through the applied-stress effective range factor expressed

by equation (20), a stress audit based on safety factor margins alone is incapable of assessing rela-

tive safety or of necessarily exposing the weakest structural region. Relative safety assessment of

different material parts becomes more clouded. A test-verified safety-factor margin may exceed
specification, but combined with a low probability range factor represented in equation (20) may

result into a submarginally stressed region that may not be visible to the analyst. Omission of dis-

cipline probability contributions and the genetic shortcoming in ignoring local distribution shapes

compounds the fading confidence of some stress audits to evaluate critical reliabilities or to identify

the weakest links through safety factor margins.

Another weakness in the method is that by imposing a standard safety factor on all structural

materials, the structural reliability is dependent on the strength of selected materials, as expressed

by the midzone stress of equation (22). Holding the safety factor constant and increasing the resis-

tive stress decreases the available operational elastic range of high-performance materials. Figure

10 depicts the relative stress performance of high-strength steel and aluminum structures using

current safety factors. Though aluminum and steel specific yield strengths are relatively the same

(lightest shade), the contingent stress (medium shade) imposed on steels for anomalous loads
backup is double that of aluminum's, which inequitably denies elastic stress (darkest shade) for

more operational performance. Figure 10 further illustrates that a stress audit indicting a steel

structure with a negative safety margin may have more reserved operational stress (darkest shade)

than some aluminum structures with positive margins and negligible denied elastic stress.
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Figure 10. Safety factor bias on material strengths.

V. FIRST-ORDER RELIABILITY METHOD

Many techniques have been investigated 8 and others are evolving for providing reliable

structures, but the one that promises to be most compatible with prevailing deterministic design

techniques and with the culture of most analysts is the first-order reliability method.

The first-order reliability method assumes that applied and resistive stress probability den-

sity functions are normal and independent and may be combined to form a third normal expression 9,

z- (25)
2 2 '(YR+aa

known as the safety index. The relationship between the safety index Z and reliability R is given by

R = P(FR-F A > O) = ¢ (Z) ,

where _(Z) is the standard cumulative distribution, and figure 11 relates the equation (25) safety
index with reliability.

09,'0

L_0.98"

0.96"

"U 0.9 4"

0.9 2"

J

_11S"

r

Lf
J

2 3 4 5 6 7
Safety Index, Z

Figure 11. Reliability versus safety index.

A. Proposed Reliability Concept

In designing to a specified reliability, its related safety index of equation (25) should be
characterized with design control and passive variables in common with current deterministic

computational methods to facilitate understanding and the technical bridging to the reliability method.
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The deterministic stresszones in equation (21) and figure 9 embody thesedesign variables, and
their sum further definesthe differenceof the applied- and resistive-stressmeansin common with
the safety index numerator in equation (25). Standarddeviationsrequired by the denominatorare
definedby the deterministic respectivezones.

To incorporate theseexpressionsinto the safety index, tolerance limit variables of the end
zonesare rearrangedand abbreviatedto easetheir repeateduse.Zone/],Rin figure 9 is the probabil-
ity contribution of the resistivestress,which is characterizedby tolerancelimit equation(9a), andby
which the resistive mean stressmay be expressedas

FR where A = (1-KOR) (26):tR=- X

Zone Aa multiaxial applied stresses are first combined by the Mises criterion of equation (15), and

then its tolerance limit is statistically derived and characterized into equation (A1) through the error

propagation method 7 outlined in appendix A. The resulting uniaxial combined applied-stress toler-

ance-limit variables are expressed by

].IA=" _'FA where B = (l+Nar/A) . (27)

Substituting these expressions into equation (21), the extended difference of the means
becomes

I.t R-l.t A = FR FR FR(SF- 1)A _ + SF (28)

Substituting equation (28) into the safety index numerator and standard deviations

FRrl a (29)_rR =ltR OR- FRrIR and aA =ltArtA-- BxSFA

into the denominator and simplifying, the proposed universal first-order reliability criterion is estab-
lished,

tpSF B-A +( cpSF-1) BA
Z = (30)

1

[(_ SF)2 2_2 2 . 21g+Oaa j"

Solving for the reliability design factor "_OSF" provides the reliability method the equivalent
of the deterministic safety factor for calculating the maximum allowed combined applied stress cri-

terion,

{oSF = FR (31)
FA

At this point, it may be noted that the reliability method established three criteria over the

deterministic's two, which deserve comparison. Unlike the deterministic arbitrarily selected safety

factor, the reliability design factor, dpSF, is solved from the reliability criterion, equation (30), to

satisfy a specified reliability, Z. Similarly to the deterministic method, the allowable applied-stress

criterion, equation (31), is constrained by the reliability design-factor criterion. As in the determin-

istic method, the structure is sized through the Mises criterion, equation (A1), equated to the
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maximum allowed applied stress. But unlike it, the combined tolerance limit variables are
statistically derived from the Misescriterion anditeratedbackinto the reliability criterion.

As in the deterministic method,the reliability methodbasic applicationsare to size a struc-
tural form to satisfy a specified reliability, or to determinethe reliability of an existing sized struc-
ture. Structural sizing is an iterative processwhich shouldbe initiated by first estimatingthe struc-
tural size using the deterministic method. This approachwould allow sharing common design
parametersand techniquesandwould providecomparisonof their final results.The estimatedsize is
then substitutedinto the stressform coefficients and combinedwith loadstolerancelimits to define
multiaxial componentstressesof equations(13) and (14). Thesemultiaxial stresscomponentsare
combinedinto a uniaxial stressthroughthe Misescriterion of equation(A1). Reducingthe tolerance
limit stresscomponentsto single valuesreducesthe resulting uniaxial stressinto a worst-on-worst
deterministic single value.

To derive the statistical tolerance-limit variablesof the uniaxial stressbasedon the Mises
criterion, and asrequired by the reliability criterion of equation(30), the combinedmean,standard
deviation,and tolerance-limitcoefficient arecomputedthroughthe error propagationlaw outlined in
appendixA and characterizedby equation(A12). Applying thesevariablesfor the estimatedstruc-
tural size into the reliability criterion, the reliability designfactor is solvedfor a specifiedreliability,
and it is imposed on the maximum allowable applied-stresscriterion of equation (31). This size
iteration processis repeateduntil optimizedby the disparity coefficient in equation (31), achieving
unity.

Design variables,controlling thedisparity coefficient that optimizesstructural sizing, are the
independentlyspecifiedprobability rangefactorsNa and K applied to the Mises and reliability cri-

teria. This is a welcome discovery, in that finally a compelling requirement for indirectly coordinating

and optimizing multidiscipline control parameters has been identified by the reliability criterion.

Reducing the disparity coefficient increases structural performance and decreases payload delivery

cost. This supplemental role of the reliability criterion to optimize performance should support and

enhance reliability systems trades with payload costs.

The Mises criterion was noted to produce two combined applied stresses, the worst-on-

worst FA from the deterministic single values of equation (A1), and the statistically derived FA'

tolerance-limit format of equation (A12) for the same size structure. They are related by

q_S F Fa = S F Fa = FR ,

and imply that the statistically derived allowable stress is more efficient by a factor equal to the dis-
parity coefficient. It should be expected that the disparity coefficient will increase as more multiaxial

stress components with dispersions are included in the Mises criterion. Thus, a reliability sized

structure should be optimized by reducing the size to achieve a disparity coefficient of unity for the
specified safety factor and reliability. This relationship quantitatively demonstrates the conservative

performance of the deterministic over the reliability method.

To predict the reliability of an existing structure, the actual size is substituted in the Mises

criterion and processed through the reliability criterion as above. The disparity coefficient is set to

unity in the reliability criterion, and the reliability is directly determined.

The first-order reliability method generates a uniformly reliable structure, and its application

requires no new skilled analysts and no exceptional understanding and effort over the prevailing
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deterministic method. It must and does provide for the appropriate implementation of design

uncertainties and for the reliability response verification which follow.

B. Design Uncertainties

For simplicity and expediency, design iteration phases often use mean value data, and

postpone design dispersions that are not obviously dominant and to which the system is not

sensitive. Dispersions and uncertainties that are later estimated to be significant should be

appropriately implemented into the reliability criterion. Uncertainties that are frequently neglected,
and that most often cause premature test failures, are the modeling uncertainties: loads, stress,

metallurgy, and manufacturing. The latter three uncertainties are stress response related and are

lump verified as either exceeding or diminishing the predicted safety factor.

Modeling errors encroach on normal probability distributions through the two normalized
statistical variables with different sensitivities to reliability. If the error biases the applied stress

mean, ignoring it will in fact increase its mean stress, decrease the difference of the means, and

thereby increase the distribution tail-overlap. This error may be compensated for by an accumulative

uncertainty factor,

e = el+e2+ e3+...+e n , (32)

acting on the conventional safety factor. Stress modeling and boundary conditions are more likely to
bias the mean. Other examples may be related to dimensional buildup and final assembly force-fits

producing preloads in operationally critical stress regions.

Modeling manufacturing uncertainties, which bias the coefficient of variation, are judged on

available data base and related experiences. Some estimates may be modeled from assumed

tolerance behavior. Dynamic loads are dependent on structural stiffness, which is contingent on

material properties' dispersions and on manufacturing and assembly tolerances. Contact wear

increases tolerances and reduces stiffness with increasing usage and must be considered in

operational robust design. Manufacturing processesare other sources of uncertainties related to

dispersions. These kinds of uncertainties increase the applied-stress standard deviation and tail

lengths about the fixed mean, which increase the tail-overlap. Standard deviation uncertainties are

combined in conformance with error propagation laws 11 that follow.

When two or more independent variables are added, their standard deviations are "root-

sum-squared" (rss) by the summation function rule,

for z = x+y ; az= 2_ (33a)

When independent variables are multiplied and/or divided, their coefficients of variation are rss

according to the power function rule:

n m = _/ rlx+m fly (33b)for z = x y , rlz n2 2 2 2

Exponents may be negative or positive as they divide or multiply, respectively. These uncertainty

dispersions are combined with the applied-stress coefficient of variation,
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rlAe = 2r/A-[r/2+r/2] °'5 , (34)

and substituted into the design parameter B of equation (27) as,

B e = (l+Nar/Ae) . (35)

The list of possible uncertainties is design specific, but only those assessed to be probable

and significant should be incorporated into the analysis. It should be cautioned that incorrect

assumptions, faulty software, and other errors and incomplete analyses that can be corrected should

not be categorized as uncertainties

Combining the cumulative and the propagation errors with the applied-stress mean and

dispersions in equation (30), the reliability design factor for a specified reliability and compensating

uncertainties is satisfied by

( tpBSF)B e-A +AB e (( tp DSF)-e- 1)
Z = , (36)

[/7 2(IP DSF)2Be 2+ 77_a2] 1

from which the reliability design factor, _o SF is solved and applied to the one allowable stress
criterion of equation (31).

C. Verification

In verifying the reliability criterion response of equation (36), the yield safety factor coupled in

the reliability design factor is identical to the deterministic safety factor of equation (18), and is

based on the NASA safety criterion. Because this safety factor is verified and available from most

structural static tests, the deterministic test-derived safety factor should be an opportune test
parameter to verify concurrently the safety index and safety factor response of static structures for

the two methods. Substituting the test-derived safety factor of equation (18) into the reliability

criterion of equation (36), the reliability criterion response is calculated and verified by

ZT = ( tPDSF r) B e -A +AB e (( tPDSF T) -e - I) (37)

[r/j_( tPDSFT)ZB2 e +rl2e A 2]½

Again, using the test-derived safety factor, the effective total test applied-stress probability range
of equation (20) is predicted by

(+A+ , (38)

and introduces another reliability assessment index before operational testing. It experimentally

verifies the probable contribution of the safety factor to the maximum predicted operational applied
stress,

Nr = Neff--Na . (39)
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VI. ILLUSTRATED APPLICATIONS

The application of the method consists of characterizing the specified applied- and resistive-

stress distributions into first-order tolerance limits and incorporating these statistical variables into

the deterministic method to estimate the component size, then that estimated size is used to

calculate design parameters required by the reliability criterion (equations (30)) either to determine

the reliability of a structural region, or to size structures to a specified reliability. Equation (36)

allows for designing with compensating uncertainty factors, and equation (37) is used to verify

experimentally the reliability response. Equation (38) predicts the effective probability range of the
test applied stress.

Cases illustrated are:

No. 1. Estimate the reliability of a deterministically 3-sigma sized structure based on yield

strength.

No. 2. Verify reliability response from test with a resulting sub marginal SFr.

No. 3. Repeat case No. 1 based on ultimate strength.

No. 4. Repeat case No. 1 with same reliability but reduced probability range factors.

No. 5. Size structure with implemented design uncertainties.

No. 6. Test verify case No. 5 reliability.

A. Case No. 1, Reliability of Deterministically Sized Component

An interesting and typical application of the method is to calculate the reliability of the

deterministically sized structure previously illustrated by the deterministic method application.

Ignoring lump errors for simplicity and to avoid fringe discussion of differences of implementation,
behavior, and results, the deterministically derived radius of 1.14 inches from the deterministic

application section is used.

In combining applied stresses as outlined in appendix A, the multiaxial applied-stress
components engaged in the Mises criterion, equation (A1), are expressed by equation (A2) as the
product of externally applied multiaxial tolerance limit loads,

Lx= 1.1+3(0.138)= 1.514 , (7a)

Lyz= 14+3(0.902)= 16.70 , (8a)

and their stress-form coefficients

15.44 + 0.159 11.98 (13b)
Cx=(1.14)_ (1.14) 3- ,
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Cyz_ 0.637 _ 0.43 (14b)
(1.14)3

Substituting these multiaxial stresses into equation (A1) gives the conservative deterministic
combined applied stress which is limited by the allowable stress criterion of equation (18), based on

the yield resistive stress of equation (9a),

Fa = [(1.514xl 1.98)2+3(16.7x0.43)2]½ = 22.0.

The statistically combined applied stress mean is calculated from equation (A3),

/.t a = [(1. lxl 1-98)2+3(14x0.43)2] ½

and partials from equations (A9) and (A10) are

Substituting these partials
deviation,

(40a)

= 16.80 , (40b)

OFA 11.98

OLx - 2×16.8 (2×1.1×11.98)= 9.397 ,

OFA 3X14"0(0"43)2 = 0.462.

3Ly z - 16.8

into equations (A5) and (A6) renders the applied-stress standard

f,. -i1

O'A =[(9.397x0.138)2+(0"462x0"902)2] 2 = 1.362 , (40c)

and the controlled standard deviation,

A = [( 9.397 X3 X0.138)2 +( 0.462X3X0.902 )2]½ = 4.08 (40d)

Using results from equations (40c), and (40d) into equation (A7), gives the combined probability

range factor,

4.08 =3.0 (40e)
Na = 1.36-----2 "

Dividing equations (40c) by (40b) provides the dimensionless coefficient of variation of the combined

applied stress,

1.362 = 0.081 (40f)
r/a= 16.------8-

Using calculated variables from equations (40b), (40e), and (40f), the statistically combined applied-

stress tolerance limit is characterized by equation (A12),

Fa = 16.8+3.0(1.362) = 20.89. (40g)

Resulting statistic variables and design developed parameters are explicitly defined and listed in
table 2
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Table 2. Designparametersand statisticalvariables,problemNo. 1.

Distribution

Applied

Resistive

NA

3

K A B

- - 1.243

3 0.733 -

Fa

20.89

Fe /.t

- 16.80

22.0 30.0

¢7

1.362

2.68

The statistically derived combined applied stress must be adjusted through the disparity

coefficient of equation (31),

Fn 22 = 1.05 (40h)
¢P - SFxF A - 1×20.89

which implies the radius is nearly optimum. Applying it to the reliability criterion of equation (30),

the calculated safety index of the deterministically sized component is,

Z = ( 1,05) 1.243-0.733+( 1.05-1)(1.243x0.733) = 4.73

[( 1.05 ×0.089 x 1.243)2+(.081 ×0.733)2]½
(40i)

and relates to a reliability of 0.96 from figure 11.

B. Case No. 2, Test Verify Reliability Response

Assume the component in case No. 1 was test verified and the test yield safety factor was

SFT. = 0.96. Applying it and the adjusted disparity coefficient to equation (30),

ZT = (1.05 ×0.96)× 1.243-0.733+((1.05×0.96)- 1)(1.243×0.733) = 4.06, (41 a)

[(( 1.05 x0.96)×0.089 × 1.243)2 +(.081 ×0.733)2]½

which relates to a reliability of less than 0.95. Because" the product dpTSF = 1.0, the effective applied-

stress probability range factor of equation (38) is coincidentally the same 3-sigma as specified by

the loads' discipline, which captures 97.7 percent of predicted applied stress.

C. Case No. 3, Repeat Case No. 1 Based on Ultimate Strength

Case No. 1 was repeated using a safety factor of 1.4 on ultimate strength. The applied-stress

allowable was 23.57 ksi resulting in a radius of r = 1.11 inches. Ultimate-strength and combined

applied-stress characteristic from table 1 and equation (A12) were revised and substituted into

equation (30). The resulting safety index exceeded figure 11, which is clearly unrealistic.

It was noted in earlier phases of this study that reliability was very sensitive to the safety

factor, and that extending it much beyond the yield point produced impractical results. Equation (20)

also denoted this large increase of the effective probability range factor with increase of safety factor.

It essentially extends the distribution mathematically into a very long thin tail that may have no

physical reality. It tends to overwhelm the probability contributions of other design variables and

degenerates the reliability criterion.
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It shouldbeconcludedthatthe reliability method be confined to the elastic range limit, which

is within the normal operating range and of primary interest to most robust structural designs. It

would also conform with other failure modes which are all based on materials yield properties.

D. Case No. 4, Repeat Case No. 1 With Reduced Probability Range Factors,

But Same Reliability

Suppose the component is not a critical structural link and a weight savings is desired by

relaxing the probability range factors to N = 2 for loads and K = 2.3 for B-basis material from 36

specimen. However, an overriding specification requires all components of the system to be designed

to a uniform reliability, or a safety index of Z= 4.73. What is the deterministically sized radius and

how will reliability derived radius be different from case No. 1?

Repeating the process as before, the B-bases resistive stress from table 1 is

FR = 30-2.3(2.68) = 23.8 ,

and loads from table 1 are

P = 1.1+2(0.138) = 1.376 ,

T= 14+2(0.902)= 15.804 .

Applying these variables and stress-form coefficients into the deterministic equations (A2) and

(AI), and equating to the ultimate resistive stress,

[( 15.44 0.159_2 + 3 ( 15.8x0.63712]½ _ 23.8 (42a)FA= 1.376_+---_--1 [ _-$ I ] - '

the deterministically solved radius is r = 1.07 in. Applying this estimated radius as a first cut in the

reliability method, the stress-form coefficients are

Cx = 15.44 4 0.159 =13.61 and Cyz= 0.637 =0.52 (42b)
(1.07) 2 (1.07) 3 ' (1.07) 3 "

Using the error propagation program in appendix A, the resulting design variables are listed in
table 3.

Table 3. Design parameters and statistical variables based on r = 1.07 in.

Distribution NA K

Applied 2 -

Resistive - 2.3

A B

- 1.156

0.795 -

FR

23.80

a

19.50 1.53

30.0 2.68

7/

0.078

0.089

Substituting these variables into the safety index equation (30) and solving for qbSF such that
Z = 4.73,

22



4.73= (pSF(1.156)-O.795+(rpSF- 1)(1.156x0.795) 1

[(qJSF) 2(0.089 × 1.156) 2+ (0.078 ×0.795)2] _

(42c)

the reliability design factor is OSF = 1.125.

The statistically derived combined applied-stress tolerance limit calculated from equation

(A12) is

FA = 19.5(1+2x0.078) = 22.5. (42d)

Adjusting the applied stress of equation (42d) to the reliability design factor through equation (31),

tpSFxF A = 1.125x22.5 = 25.3 > FR ,

the applied stress is shown to exceed the resistive stress. Assumptions applied to the deterministic
method to size the radius were too small to satisfy the specified reliability. Increasing the radius to

1.10 in, the stress-form coefficients reduce to Cx = 12.78 and Cyz = 0.48. Applying them to the error

propagation law programmed in appendix A produces a statistically derived combined applied stress

of FA' = 21.2. Adjusting the applied stress with the above derived reliability design factor,

tpSF×F a = 1.125x21.2 = 23.8 = FR , (42e)

the 1.10-in radius satisfies the reliability requirements. Though starting with different design

parameters, the increased radius demonstrates that the specified reliability will resize the structure
to be satisfied regardless of the autonomously controlled probability range factors. The radius is less
than case No. 1 because the resistive stress selected is greater than the A-bases. Again using

equation (38), the effective combined stress probability range factor is Neff = 3.83 with a probability

of 0.94.

E. Case No. 5, Size Structure With Design Uncertainties

A typical structural sizing problem with implemented design uncertainties might assume the

configuration and environments of case No. 1 with estimated manufacturing and assembling errors of

e = 0.12 and 0e = 0.7r/A. A component level of R = 0.94 reliability is specified and another is added

because of the inexperience and because of the sensitivity 12 of the method. A total design reliability

of R = 0.95 is used to guarantee the specified 0.94 which relates to a safety index of Z = 4.25.

In initiating the sizing iterative process through the deterministic method, the design

uncertainty errors are lumped into the maximum allowed applied-stress criterion of equation (24),

22 = 19.4 (43a)
FA- 1×(1+0.13)

and equating it to the Mises sizing criterion using statistical variables from table 1 and stress form

coefficients of equations (13b) and (14b),

[(3.3 0.241] 2 (_)2] 1FA = 2........_7+_....___) + 3 2 ,
(43b)

23



the estimatedradius is r = 1.15. Substituting the radius into equations (13b) and (14b), the stress-
form factors are

15.44
.159 c - ,637

Cx= _ -o _.--_ - 11.78 - =0.42 (43c), yz 1.153

Substituting those stress-form factors and the normal and shear loads' means, standard deviations,

and probability range factors from table 1 into the error propagation law of appendix A, the design

variables required by the propagation law are listed in table 4. Table 5 lists the reliability criterion
variables.

Table 4. Error propagation law variables for 1.15-in radius.

Design Variables Normal Load Shear Load Combined Uniaxial

Mean

Standard deviation

Probability range factor
Stress form coefficient

Coefficient of variation

Applied stress

1.1

0.138

3

11.78

14.0

0.90

3
0.42

16.48

1.34

3

0.081

20.5

Table 5. Reliability criterion variables for 1.15- and 1.17-in radii.

Distribution Rad Na K A B Fa FR /.t tr 77

Resistive - - 3 0.733 - - 22.0 30.0 2.68 0.09

Applied 1.15 3 - - 1.24 29.5 - 16.48 1.34 0.081
1.17 3 - - 1.24 19.73 - 15.83 1.39 0.082

Using equation (34), the combined applied-stress coefficient of variation is

17ae = 2 X0.081- 0.081 X( 1+0.72) 0.5 = 0.063 , (43d)

and substituting into equation (35) gives

B e = 1+3x0.063 = 1.19 . (43e)

Applying the above developed design variables to the reliability criterion of equation (36) and
solving for the reliability design factor 0 SF from

4.25 = (q_SF)(1.19)-O.73+(((oSF)-O.12-1)(1.19×0.73) (43f)

[(tp sF)Z(0.09x 1.19)2+(0.081 x0.73)2] 1 '

the reliability design factor is 0 SF = 1.10 for a 1.15-in radius. Using it and the final statistically
derived applied stress of case No. 4, equation (31) equates to the minimum resistive stress,

24



_pSFxFA = 1.10x20.5 = 22.55 > FR , (43g)

which exceeds the resistive stress of equation (9a).

Repeating steps (43c) through (43g) with an estimated radius of 1.17 in, _ SF = 1.10,

t

_pSFxF a = 1.10x19.73 = 21.73 = FR , (43h)

and the 1.17-in radius is adequate.

F. Case No. 6, Test Verify Reliability of Case No. 5

To test verify the reliability response of case No. 5 for a 1.17-in radius, apply the disparity

coefficient derived from equation (42f) and the test verified yield safety factor of 1.05 (assumed) into

equation (37),

4.9 = (1.1xl.05)(1.19)-0.73+((1.1xl.05)-0.12-1)(1.19x0.73)

[( 1.1 x 1.05)2(0.09x 1.19)2+ (0.081 x0.73)2]½

(44)

the resulting safety index of 4.9 relates to a reliability of 0.96. Using equation (38), the effective

probability range factor is Neff > 5, capturing over 0.94 percent of predicted applied stress.

VII. RELIABILITY SELECTION CRITERIA

Formulations of reliability selection criteria are still in sparse and sketchy concepts for various

structural failure modes. Selection criteria concepts being considered for semistatic structures range

from an arbitrarily agreed upon standard value as fashioned by the deterministic safety factor to

criteria supporting risk analyses. In the absences ,of any established selection criterion, it is
interesting to examine briefly the interaction of these two _concepts with the proposed first-order

reliability method.

An immediate demand for a simple and user-friendly reliability selection criterion would be to

develop a standard safety index derived from the reliability criterion of equation (30), based on a

range of design variables representative of successful deterministic design and operational

experiences. This approach would not only provide a basis for safety factor and safety index

judgment and correlation, but it would also promote designer confidence in the transition. A first-cut

safety index was bounded with a small sample of A-basis materials, 3-sigma probability forcing-

function dispersions, and design variables associated with a current aerostructure. The resulting

minimum reliability exceeded a value of four-nines on operational stress limit (yield stress).

Because this limited analysis revealed a critical sensitivity of the safety index to the reliability

design factor, the structure should be designed to a reliability of five-nines in order to guarantee

four-nines. The safety index was also noted to be an order of magnitude less sensitive to other

design variables. The motive for designing to an arbitrarily selected reliability over the arbitrarily

selected safety factor is to overcome nonuniform reliability design, inadequate stress audits, and

other deficiencies discussed above. An extension of this study is the subject of another paper.

25



One considered approach to supporting risk analysesis to calculate the risk cost using the
productof theprobabilityof failure,

p = (l-R), (45)

and the cost consequence of that structural failure. The cost consequence may include cost of life and

property loss, cost of operational and experiment delays, inventories, etc. A suggested criterion for

balancing the risk cost may be to equate some proportion of the risk cost to the initial and recurring
costs required to provide the structural reliability to balance the risk cost. Initial costs would

consider the increased structural sizing to the same reliability used in the risk through the failure

probability of equation (45). Recurring costs include increased propellant, and the increased payload

performance costs caused by the increased structural sizing and propellant weights to accommodate

the risk side of the equation.

It would seem that a structural reliability design method is essential for _he development of a

reliability selection criterion. Since different failure modes may require different reliability design

methods, reliability selection criteria should be expected to be failure mode related.

VHI. SUMMARY AND CONCLUSION

The deterministic method is the most commonly applied technology on semistatic flight

structures, which comprise over 60 percent of aerostructural weight. It is arbitrarily specified, directly

and expediently factored into structural sizing, enabling substantial autonomous interdiscipline

design development, and its response may be experimentally verified. It is applicable for sizing

relatively small parts having a multitude of critical regions, and for complex finite element models.

However, it is genetically flawed because it ignores probability distribution shapes, and therefore, it

cannot provide uniformly reliable structures, nor can a stress audit, based on safety factor margins

alone, identify the weakest region. It cannot support optimum performance design and risk analyses.

The proposed reliability method superimposes the deterministic design developed variables
on the first-order reliability method to surmount,deterministic deficiencies and share reliability

benefits. The suggested universal normalization of observed and measured engineering data admits

its application to normal probability distribution techniques leading to the first-order reliability

method. Normal probability distribution techniques are the simplest to cl_aracterize, the most
developed, the best known, and the easiest to learn. Disparities resulting from the universal

normalization of data with another assumed distribution may be implemented into the reliability

criterion as another modeling error.

All input and output developed design data and parameters based on probability distributions

must be statistically characterized with explicitly defined mean, standard deviation, and range factor.

Techniques for combining and processing them are presented and illustrated. The Mises criterion is
used to combine multiaxial applied stresses into a uniaxial stress to be compatible with the

experimentally derived uniaxial material strength. Resulting uniaxial variables are statistically

derived through the well known error propagation law.

A reliability design factor is introduced into the reliability criterion consisting of the NASA-

specified safety factors, and a disparity coefficient. The reliability design factor is solved from the
reliability criterion and is used similar to the deterministic safety factor. The disparity coefficient was
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noted to converge to unity when the multidiscipline controlling parameterswere optimized with
structural sizing. This unexpectedreliability criterion role of optimizing multidiscipline distribution
range factors with payload performanceshould simplify and enhance trades. Several different
applicationsare illustrated with interestingresults.

An effective probability range factor is also introduced which combines the applied stress
tolerance limit and test-derivedreliability design factor to predict the total probability of the test-
applied stress. It provides another index for design acceptance.Selection criteria for standard
reliability and supportingrisk managementarediscussed.

The proposed universal first-order reliability method has been demonstrated to be user-
friendly, requiring only basic knowledgeof the simplest probability distribution, and it surmounts
deterministic deficiencies. It may be used to supplement current deterministic stress audits on
semistatic structures and provides uniformly reliable, high-performance, robust aerostructures,
which reducepayload delivery costsin supportof affordableaccess-to-space.
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APPENDIX A

Combined Applied Stress

A condition for extending deterministic practices to the reliability method is that multiaxial

applied stress components employed in the Mises criterion must be statistically characterized,

having the combined mean, standard deviation, and probability range factor explicitly defined in

equation (17) format. The Mises criterion is a technique for combining local multiaxial stresses

induced by components of random acting external loads and generally producing a worst-on-worst

case. Equation (15) represents worst-on-worst case and is here recast as,

FA = [(CxLx)2+(CyLy)2+ (CzLz)2- (CxL x) (CyLy)-(CxLx)(CzL z)

- (CyLy)(CzLz)+ 3( (CxyL_)2+(CxzLxz)2 +(CyzLyz)2)] 1

(A1)

where Li are the multiaxial loads tolerance limits, Ci are their stress form coefficients,

Fi = CiL i = Ci(l.lLi+l_lYi) , (A2)

and/-tLi are the load means.

These stresses are more appropriately combined by the well known error propagation law 7

which consists of expanding the functional relationship in a multivariable Taylor series about a

design point (mean) of a system. The mean of the Mises combined applied stresses is determined
from

1

[//2 2 2 2 2 2 ]_]/a = x+]./y+]./z-]./x]./y-/L/x]./z-]./y]./z+3 (p xy + ll xz+ l.t yz) ' (A3)

where the multiaxial means are

Pi = Ci/-tL i • (A4)

The combined standard deviation is calculated from

(_9Fa 2 + (/gFa z 9[(bFa 2

and the controlled standard deviation is
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I:0o4+ 9 [kS-_--_/_o" + _8--_ N_o" +

The probability range factor is calculated from equations (A5) and (A6)

_a
NA _ _

aa

and using equation (4), the coefficient of variation is

_ O"A

_A- _--_a.

The partials of each term under the radical of equation (A1) are given by the chain rule,

d _ d ,lff .dw 1 dw

dL i = dw dLi - 2 d'ff "_i '

The normal partials are:

_FA
8Lx

and the shear partials are

m

2F A ' _)Ly 2F a

0FA=Q(2_zQ-U_q-_ yCy)
bL z 2FA

8Fa 3C2/'t _ 8Fa 3C2zp xz 8F a 3 C_zp2 yz

' F. F.

All partials are evaluated at the system mean.

(A6)

(AT)

(A8)

(A9)

(A10)

Applying equations (A3), (A5), and (17) provides the appropriate combined applied stress

tolerance limit of the system,

(All)

(A12)

or

FA = 12 A+NACYA ,

FA=].I A(1 +NAt/A) .

The tolerance limit derived from the worst-on-worst method of equation (A1) should always

be larger and more conservative than the more optimum one provided by equations (A11) or (A12).
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Because of the general application and routine nature of this technique, it is programmed here

in Quick Basic.

'ERROR PROPAGATION METHOD; MISES CRITERION
DEFDBL A-Z

INPUT"NUMBER OF NORMAL STRESSES=",NS
DIM STATIC NSM(3),NSSD(3),NSNF(3),NSFD(3),NSC(3),XN(3),LNS(3)

FOR I= 1 TO NS
PRINT "NORMAL LOAD MEANC;I;")--"

INPUT NSM(I)
PRINT"NORMAL LOAD STANDARD DEVIATION(";I;")="
INPUT NSSD(I)
PRINT"NORMAL LOAD N-FACTORC;I;")--"
INPUT NSNF(I)
PRINT"NORMAL LOAD COEFFICIENT(" ;I; ")="
INPUT NSC(I)
NEXT I

INPUT "NUMBER OF SHEAR STRESSES=",MS
DIM STATIC SSM(3),SSSD(3),SSNF(3),SSFD(3),SSC(3),XS(3),LSS(3)

FOR I=1 TO MS

PRINT "SHEAR LOAD MEANC;I;")="
INPUT SSM(I)
PRINT "SHEAR LOAD STANDARD DEVIATIONC;I;")="
INPUT SSSD(I)
PRINT "SHEAR LOAD N-FACTOR(";I;")="
INPUT SSNF(I)
PRINT"SHEAR LOAD COEFFICIENTC;I;")="
INPUT SSC(I)
NEXT I

FOR I=1 TO NS:XN(I)=NSM(I)*NSC(I):NEXT I
FOR I=1 TO MS:XS(I)=SSM(I)*SSC(I):NEXT I

'CALCULATION OF SYSTEM MEAN

S I=0:FOR I=1 TO NS:S I=S I+XN(I)^2:NEXT I
S2=0:FOR I=1 TO MS:S2=S2+XS(I)^2:NEXT I
MZ=SQR(S 1-XN(1)*XN(2)-XN(1)*XN(3)-X(2)*XN(3)+3*S2)

'CALCULATION OF DERIVATIVES
NSFD(1)=NSC(1)*(2*XN(1)-XN(2)-XN(3))/2/MZ
NSFD(2)=NSC(2)*(2*XN(2)-XN(1)-XN(3))/2/MZ
NSFD(3)=NSC(3)*(2*XN(3)-XN(I)-XN(2))/2/MZ
FOR I=1 TO MS:SSFD(I)=3*XS(I)*SSC(I)/MZ:NEXT I

'CALCULATION OF SUM OF SQUARES OF NORMAL STRESSES
S3=0:S4=0:FOR I=1 TO NS
S3=S3+(NSFD(I)*NSSD(I))^2
S4=S4+(NSNF(I)*NSFD(I)*NSSD(I))^2
NEXT I

'CALCULATION OF SUM OF SQUARES OF SHEAR STRESSES
$5=0:$6=0: FOR I=1 TO MS

S5=S5+(SSFD(I)*SSSD(I))^2
S6=S6+(SSNF(I)*SSFD(I)*SSSD(I))^2
NEXT I
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'CALCULATIONOFSYSTEMSTANDARDANDEFFECTIVEDEVIATIONS
SZ=SQR(S3+S5):SN=SQR(S4+S6)
NE=SN/SZ

'CALCULATIONOF SYSTEM COEFFICIENT OF VARIATION
ETA=SZ/MZ

'CALCULATION OF SYSTEM TOLERANCE LIMIT

TL--MZ+(NE*SZ)

'CALCULATION OF MISES FUNCTION
FOR I=1 TO NS
LNS(I)=(NSC(1)* (NSM(I)+NSNF(I)*NSSD(I)))^2
NEXT I
FOR I=1 TO MS

LSS(I)=(SSC(I)*(SSM(I)+SSNF(1)*SSSD(I)))^2
NEXT I
FMI=0:FOR I--1 TO NS
FM1--FMI+LNS(I):NEXT I
FM2=0:FOR I--1 TO MS

FM2=FM2+LSS(I):NEXT I

FM= SQR(FM I+3*FM2)

PRINT "COMBINED APPLIED STRESSS =";FM
PRINT "MEAN =";MZ
PRINT "STANDARD DEVIATION ="SZ

PRINT "EFFECTIVE N =";NE
PRINT "COEFFICIENT OF VARIATION --";ETA
PRINT "TOLERANCE LIMIT =";TL
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APPENDIX B

MDOF Loads Formatting

Because input environments to response analysis are time-dependent and statistically
characterized, the induced load output is also time-dependent and of a statistical nature. The

response histories at select grid points are illustrated in figure B 1, in which a specific time event may

produce a maximum internal load for a degree of freedom at one grid point only. Other time events
produce maximum loads at other grid points as shown. Where a maximum internal load response is

identified at a grid point, the free-body diagram of the included substructure experiencing that

maximum response is constructed with the influence of all time-consistent loads acting along the

total system.

I I/_ I

Z
II i t-

V5 '_ I I ' ' t

,orc,o 
functions /r ," ' ' '

_V7/_ t=_ t=2 1=3 t

Figure B 1. Time-dependent response.

This computational process for designing different parts through time-consistent and

statistically dispersed loads is repeated for each substructure at each unique event time, producing

the maximum load response. The end product of the structural response to environmental excitations
is a set of maximum design loads, or "limit loads," and event times for all the system substructures

and critical regions. Common practice is to provide response limit loads in deterministic single value

form. The reliability method requirement is to format the deterministic limit load into its tolerance

limit parameters of equations (7) and (8).

Current single value response loads consist of a time-consisting set of loads acting along the

total structural system with gains gi influencing the limit load at some grid point 1 along an x-axis,

Lxl = gl(Pl +NI o"1)+g2 (#2+N2 cr2)+g3(P3+N3 0"3)+ .... (B1)

Collecting terms from equation (B 1) reduces the load response to the sum of the combined mean and
the combined variation terms,

n n

Lxl = _ gill i + _ giNi t_i

i=1 i=1

(B2)

where the second term reflects the worst-on-worst input-output process and does not conform to

the statistical rss output rule of equation (3) to properly define the load tolerance limit output,
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Lxl = i=_l gil "t i + i=1 [giNi •
(B3)

One possible and direct process for obtaining the appropriate expression of equation (B3)

with existing software is to first compute the limit load with its unique set of conditions, and, as

currently practiced, to provide results of equation (B2). Then compute the normal limit load (no
dispersions),

n

Pxl = Z gi_ i , (B4)
i=1

and subtract it from equation (B2). Compute the effective response variance through a subroutine,

_2 2

i=1

(B5)

and determine the effective probability range factor from

i=1

(B6)
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